Kinetics Rate vs. Time

Created by Schweitzer 02/24/03 **Kinetics Mathematics** Integrated Rate Law A ---> products rate = - $(\Delta[A]/\Delta t) = k[A]^m$ average rate $rate = - (d[A]/dt) = k[A]^{m}$ instantaneous rate

Zero Order

- Change in concentration does not effect rate
- Order = 0
- Rate = $k[A]^0$
- Integrated rate law: $[A]_t = -kt + [A]_0$
- Graph = $[A]_t$ vs. t
- Slope = negative (-k)
- Units of k = conc./time

First Order

- Change in concentration is proportional to change in rate
- Order = 1
- Rate = $k[A]^{1}$
- Integrated rate law: $ln[A]_t = -kt + ln[A]_0$
- Graph = $ln[A]_t$ vs. t
- Slope = negative (-k)
- Units of k = 1/time

Second Order

- Change in rate is proportional to the square of the concentration
- Order = 2
- Rate = $k[A]^2$
- Integrated rate law: $1/[A]_t = kt + 1/[A]_0$
- Graph = $1/[A]_t$ vs. t
- Slope = positive (k)
- Units of k = 1/conc. * time

Integrated rate law summery

Integrated rate laws

Order	Rate	Integrated Rate Equation*	Straight- line Plot	Slope of Plot	Units of <i>k</i>
0	$k[\mathbf{A}]^0 = k$	$[\mathbf{A}] = -kt + [\mathbf{A}]_0$	[A] vs <i>t</i>	- <i>k</i>	conc/time
1	$k[\mathbf{A}]$	$\ln[\mathbf{A}] = -kt + \ln[\mathbf{A}]_0$	1n[A] vs t	-k	1/time
2	$k[A]^2$	$\frac{1}{[\mathbf{A}]} = kt + \frac{1}{[\mathbf{A}]_0}$	$\frac{1}{[A]}$ vs t	k	1/conc•time

*In this table, [A]₀ indicates the initial concentration of substance A, that is, the concentration of A at t = 0, the time when the reaction was started

Harcourt Brace & Company items and derived items copyright ©1998 by Harcourt Brace & Company

MR12T01.PIC

What can we do with these equations

- Solve for different concentrations given the time. Order and K must be supplied
- Solve for time at which a concentration will
 OCCUT Order and K must be supplied
- Determine rate constant (k)
- Determine order of reaction: 0,1,2

Determine Concentration at given time

 The time required for half of a substance to react is 726 seconds. The starting concentration is .600M, what will the concentration be after 1452seconds? This reaction is first order.

 What is a ½ life? Can you solve this problem with only half life?

Determine Concentration at given time ANSWER

- Time 0 = [.600]
- 726 sec = [.300]
- 1452 sec = [.150]
- Use the equation, determine k?

Mathematically solve for k

- $ln[A]_t = -kt + ln[A]_o$
- Rearrange
 - $ln[[A]_t/[A]_o] = -kt$
 - ln[1/2] = -kt
 - -.693/-t = k (loose negatives)
 - Or.... solve for half life (given constant) .693/k = $t_{1/2}$

Try this!

• How long will it take the previous experiment to reach a [.100]?

Answer

- K = 9.55E-4 1/s (solved in last problem)
- $\ln[[A_t]/[A]_o = -kt$
 - Insert concentrations and solve for t.
 - T = 1880. seconds

Use graphing to determine order of reaction!

All equations are y = mx +b. If data correctly match up with that equation the line will be straight.

Therefore

A reaction will only match up with one of the equations

The matched equation is the order

Laboratory example Goal: Determine order

This plot of $\ln[H_2O_2]$ vs. time produces a straight line, suggesting that the reaction is first order.

Is this zero order??

•Notice: as Concentration decreases the rate decreases. If this was zero order the rate would not be affected by the drop in rate.

•note: k = rate (only zero order)

• Note the equation below is a linear y = mx + b equation. In order for this to qualify the graph would have to be straight.

•Not zero order.

Is this reaction 1st order???

Note: y = mx + b is a linear expression And the graph is straight.

Is this reaction second order

- Y = mx + b is a linear relationship.
- Did the relationship turn out linear?
- No.

