Kinetics

Rate vs. Time

Created by Schweitzer 02/24/03

Kinetics Mathematics
 Integrated Rate Law

A ---> products

$$
\text { rate }=-(\Delta[A] / \Delta t)=k[A]^{m}
$$

average rate

$$
\text { rate }=-(\mathrm{d}[\mathrm{~A}] / \mathrm{dt})=\mathrm{k}[\mathrm{~A}]^{\mathrm{m}}
$$

instantaneous rate

Zero Order

- Change in concentration does not effect rate
- Order = 0
- Rate $=k[A]^{0}$
- Integrated rate law: $[A]_{t}=-k t+[A]_{0}$
- Graph $=[A]_{t}$ vs. t
- Slope = negative (-k)
- Units of $k=$ conc./time

First Order

- Change in concentration is proportional to change in rate
- Order = 1
- Rate $=k[A]^{1}$
- Integrated rate law: $\ln [A]_{t}=-k t+\ln [A]_{0}$
- Graph $=\ln [A]_{t}$ vs. t
- Slope = negative (-k)
- Units of $k=1 /$ time

Second Order

- Change in rate is proportional to the square of the concentration
- $\operatorname{Order}=2$
- Rate $=k[A]^{2}$
- Integrated rate law: $1 /[A]_{t}=k t+1 /[A]_{0}$
- Graph $=1 /[A]_{t}$ vs. t
- Slope = positive (k)
- Units of $k=1 /$ conc. * time

Integrated rate law summery

Integrated rate laws

Order Rate

$\mathbf{0}$	$k[\mathbf{A}]^{0}=k$
$\mathbf{1}$	$k[\mathbf{A}]$
2	$k[\mathbf{A}]^{2}$

Integrated StraightRate
Equation*
$[\mathrm{A}]=-\boldsymbol{k t}+[\mathrm{A}]_{0}$
$\ln [A]=-k t+\ln [A]_{0}$
$\frac{1}{[\mathrm{~A}]}=k t+\frac{1}{[\mathrm{~A}]_{0}}$
Plot $\frac{1}{[A]} \mathrm{vs}$

Slope
Units of Plot of \boldsymbol{k} $[A]$ vs $t \quad-k \quad$ conc/time 1/time k 1/conc-time
*In this table, $[A]_{0}$ indicates the initial concentration of substance A, that is, the concentration of A at $t=0$, the time when the reaction was started

What can we do with these equations

- Solve for different concentrations given the time. order and K must be s supplied
- Solve for time at which a concentration will OCCUY Order and K must be supplied
- Determine rate constant (k)
- Determine order of reaction: 0,1,2

Determine Concentration at given time

- The time required for half of a substance to react is 726 seconds. The starting concentration is .600 M , what will the concentration be after 1452seconds?
This reaction is first order.
- What is a $1 / 2$ life? Can you solve this problem with only half life?

Determine Concentration at given time ANSWER

- Time 0 = [.600]
- $726 \mathrm{sec}=[.300]$
- $1452 \mathrm{sec}=[.150]$
- Use the equation, determine k ?

Mathematically solve for k

$\ln [\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+\ln [\mathrm{A}]_{0}$

- Rearrange
$\left.\ln [A]_{[}[A]_{0}\right]=-k t$
$\ln [1 / 2]=-k t$
$-.693 /-\mathrm{t}=\mathrm{k} \quad$ (loose negatives)
Or..... solve for half life (given constant)
.693/k $=\mathrm{t}_{1 / 2}$

Try this!

- How long will it take the previous experiment to reach a [.100]?

Answer

- $K=9.55 \mathrm{E}-41 / \mathrm{s}$ (solved in last problem)
- $\ln \left[\left[A_{t}\right] /[A]_{0}=-k t\right.$
- Insert concentrations and solve for t.
$-T=1880$. seconds

Use graphing to determine order of reaction!

All equations are $y=m x+b$. If data correctly match up with that equation the line will be straight.

Therefore
A reaction will only match up with one of the equations
The matched equation is the order

Laboratory example Goal: Determine order

This plot of $\ln \left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ vs. time produces a straight line, suggesting that the reaction is first order.

Is this zero order??

-Notice: as Concentration decreases the rate decreases. If this was zero order the rate would not be affected by the drop in rate.
-note: $\mathrm{k}=$ rate (only zero order)

- Note the equation below is a linear $y=m x+b$ equation. In order for this to qualify the graph would have to be straight.
-Not zero order.

Is this reaction $1^{\text {st }}$ order???

Note: $y=m x+b$ is a linear expression And the graph is straight.

Is this reaction second order

- $Y=m x+b$ is a linear relationship.
- Did the relationship turn out linear?
- No.

Integrated-rate-law plots for $\mathrm{H}_{2} \mathrm{O}_{2}$ reaction

